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Abstract. Sepsis is a severe medical illness with over 1.7 million cases
reported each year in the United States. This condition is the result
of an inflated immunological response to infection. Early diagnosis of
sepsis remains a major challenge in healthcare due to initial symptoms
being nonspecific and the lack of currently available biomarkers that
demonstrate sufficient specificity or sensitivity suitable for clinical prac-
tice. Wearable technologies, such as photoplethysmography (PPG), have
led to the development of improved diagnostic instruments. PPG uses
optical technology to measure changes in blood volume in peripheral tis-
sues, enabling continuous monitoring. Identifying modest physiological
changes that indicate sepsis can be challenging since they occur with-
out a body reaction. Deep Learning (DL) models can help overcome
the diagnostic gap in sepsis diagnosis and intervention. This study ana-
lyzes sepsis-related characteristics in PPG signals utilizing a collection
of waveform records from both sepsis and control cases. The proposed
model consists of five layers: input sequence, long short-term memory
(LSTM), fully-connected, softmax, and classification. The LSTM layer is
chosen to extract and filter features from cycles of PPG signals; then, the
features pass through a fully-connected layer to be classified. We tested
our LSTM-based model on 915 one-second intervals to identify and clas-
sify sepsis severity. Our LSTM-based model accurately detected sepsis
(91.30% for training and 89.74% for testing). The sepsis severity cate-
gorization achieved an accuracy of 85.9% in training and 81.4% in test-
ing. Multiple training attempts were conducted to validate the model’s
detecting capabilities. Preliminary results show that a deep learning
model utilizing an LSTM layer can detect and categorize sepsis using
PPG data, potentially allowing for real-time diagnosis and monitoring
within a single cycle.
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1 Introduction

Sepsis is a life-threatening medical condition affecting approximately 1.7 million
adults in the United States annually, with nearly 270,000 resulting in fatalities
[5]. Sepsis stems from an exaggerated immune response triggered by infection,
releasing immune chemicals into the bloodstream. While initially intended to
combat the infection, these chemicals instead incite widespread inflammation
and blood clot formation, obstructing blood flow and depriving vital organs of
oxygen and nutrients. This often results in significant organ damage. In health-
care, sepsis poses a considerable challenge, contributing significantly to mortal-
ity and hospital readmissions. The early diagnosis of sepsis remains a formidable
task, primarily relying on standard clinical measures with limited sensitivity and
specificity [19]. This involves evaluating vital signs, taking a patient’s medical
history, and conducting a physical examination. Subsequently, blood tests are
performed to examine biomarkers like white blood cell count, C-reactive protein
(CRP) levels, and procalcitonin. Imaging tests, such as chest X-rays or CT scans,
may be used to identify infection sources or potential organ dysfunction.

However, these tests alone may not confirm sepsis [4]. Clinicians often refer
to established clinical criteria like the SIRS (Systemic Inflammatory Response
Syndrome) criteria to aid sepsis identification [14], but these criteria have limi-
tations. Challenges in early diagnosis arise from the non-specific nature of initial
sepsis symptoms, variability in biomarkers, reliance on clinical judgment, time
constraints, and patient diversity [17].

Micro-circulatory dysfunctions observed in sepsis patients are reflected in
parameters that can be conveniently evaluated at the skin level, such as the pho-
toplethysmogram (PPG). The PPG signal is commonly monitored using devices
like the pulse oximeter, which is widely used, user-friendly, and affordable [12].
PPG signals are a non-invasive optical method that monitors changes in blood
volume within peripheral tissues, providing a wealth of information, including
heart rate, oxygen saturation, and blood flow dynamics [20]. It allows contin-
uous monitoring and early detection of circulatory issues, even before severe
symptoms emerge. Wearable devices equipped with PPG sensors enable remote
monitoring, which is especially beneficial for patients with chronic conditions.

Additionally, PPG plays a pivotal role in diagnosing various medical condi-
tions, making it an invaluable tool in modern healthcare [3]. Medical applications
are related to the use of PPG signals and combine with algorithms and tech-
niques in different ways; for example, Cardiovascular Disorders (CVD) use a
fuzzy model, sleep disorders require peripheral oxygen saturation signals, and
Diabetes is tracked at the same time that PPG signals to train machine learning
models [1]. For the CVD, Prabhakar et al. in [18] optimize the CVD diagnosis
from PPG signals by utilizing a fuzzy-based approach with classification. The
first step consists of extracting parameters from the PPG signal: Energy, Vari-
ance, Approximate Entropy (ApEn), Mean, Standard Deviation (STD), Skew-
ness, Kurtosis, and Peak Maximum. Later, optimization algorithms such as Dif-
ferential Search (DS), Shuffled Frog Leaping Algorithm (SFLA), Wolf Search
(WS), and Animal Migration Optimization (AMO) are applied to a fuzzy model
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for classification. Another application in which the PPG signals are widely used
is detecting and classifying sleep apnea. Lazazzera et al. in [10] develop a detec-
tor consisting of two parts: one that detects reductions in amplitude fluctua-
tion of PPG and one that catches oxygen desaturations. The classification was
performed to discriminate between central and obstructive events, apneas, and
hypopneas.

Enhancing sepsis diagnostic capabilities through PPG and wearable tech-
nologies is imperative. These tools offer continuous monitoring, enabling the
identification of subtle physiological changes indicative of sepsis before severe
symptoms manifest. Integrating computational models, particularly Deep Learn-
ing (DL) models as Long Short-Term Memory (LSTM) models, enhances the
potential to bridge the diagnostic gap in sepsis detection and intervention [9].
Kam and Kim in [9] present a comparative study of deep learning models for
feature extraction from PPG signals that are used for the early detection of
sepsis. This study’s higher accuracy is 93%; for 100 features as input for an
LSTM-based model, the features correspond to multiple physiological parame-
ters like heart rate, blood pressure, blood oxygen saturation, and pH, among
others. LSTMs excel in analyzing biomedical signals, capturing intricate tempo-
ral dependencies, and identifying subtle variations. Their ability to extract vital
features from continuous physiological signals monitored by PPG and wearables
significantly contributes to early sepsis detection and improved patient care.

As sepsis diagnosis and intervention become increasingly data-driven, there
is a growing opportunity to fuse medical science and computational approaches.
This confluence promises to improve sepsis preventive diagnosis and advance our
understanding of other complex medical conditions. The transformative poten-
tial of PPG, wearables, and DL models in healthcare is a testament to the
evolving medical research and technology landscape. By harnessing these inno-
vative tools and computational strategies, we are better equipped to confront
the challenges of sepsis and other critical medical conditions, offering hope for
more timely interventions and improved patient outcomes [16].

This document continues with the Methodology, Results, and Conclusion
sections. In the Methodology section, the steps to generate the dataset, the
preprocessing of the signal, the sepsis detection, and classification models are
presented. The LSTM layer is the base of the model for the detection and classi-
fication tasks; see Fig. 4. The Results section shows the detection and classifica-
tion experiments, with a comparison of the performance in terms of the random
trials used in the training and testing stages. Finally, the Conclusion section
presents the contribution and future steps of our work.



6 M. A. Alvarez-Navarro et al.

oe Examples PPG No Sepsis, id: 1

Intensity [unitless]

'
=
(8]

0 1000 2000 3000 4000 5000 6000 7000 8000
Time steps(Sample rate 125[Hz])

» Examples PPG No Sepsis, id: 2

0.2

0 1000 2000 3000 4000 5000 6000 7000 8000
(a) PPG signals with Non-sepsis label.

Examples PPG Sepsis, id: 1

) b

0 1000 2000 3000 4000 5000 6000 7000 8000

05 Examples PPG Sepsis, id: 2

-0.5

0 1000 2000 3000 4000 5000 6000 7000 8000
(b) PPG signals with sepsis label.

Fig. 1: Example of PPG signals in MIMIC III database. Reduce to 1 min.

2 Methodology

2.1 Dataset

The Medical Information Mart for Intensive Care III (MIMIC-III) database [7],
is a large, publicly available database containing de-identified healthcare data of
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patients admitted to critical care units. From MIMIC-III, the subset MIMIC-IIT
Clinical Database is available as a group of comma-separated value files that
are imported into a PostgreSQL relational database system [8]. We obtain PPG
waveforms records from MIMIC-III Waveform Database Matched Subset [15], a
part of MIMIC-III. The common information between the databases is guarantee
by the id of the patient.

Diagnoses within these datasets are primarily documented as ICD-9 codes,
typically generated upon the conclusion of a hospitalization, lacking any tempo-
ral information regarding the date of diagnosis. Consequently, we opted to select
a subset of subjects, categorized as either “sepsis” (cases) or “non-sepsis” (con-
trols) patients defined by their ICD-9 Codes, respectively. The selection criteria
for distinguishing sepsis and non-sepsis subjects are summarized in Table 1, the
initial benchmark is presented by Lombardi et al. in [12]. We employed a cus-
tomized Structured Query Language (SQL) query during this phase to perform
the necessary data extraction and selection. As a result, the group of patients
containing a PPG signal with sepsis had 812 records, while the control group
had 1248 records. Figure 1 shows the sepsis and control PPG signals.

Table 1: Criteria for the definition of control and case patients

Control patients Case patients

One or more following ICD-9 | One or more following ICD-9
codes: 311 (Depressive codes: 99,591 (sepsis), 99,592
disorder NEC), 3051 (Severe sepsis), 78,552
(Tobacco Use Disorder), (Septic Shock)

30,000 (Anxiety State NOS),
2498 (Other persistent
mental disorders due to
conditions classified
elsewhere), 3004 (Dysthymic

Disorder)

Subset was present in the Subset was present in the
Matched Subset of Matched Subset of
MIMIC-IIT Waveform MIMIC-IIT Waveform
Database Database

2.2 Preprocessing and Quality Estimation

We retrieved the recordings from the MIMIC-III Waveform Database Matched
Subset and acquired the PPG data of the specified patients by utilizing the
Waveform Data Base (WFDB) Python package [21]. Subsequently, the chosen
signals were segmented into intervals of 1 to 3h, and the rejection criteria con-
sisted of signals with only NAN, or only 0 or amplitudes lower than le—5 are



8

Fig. 2: Comparison of a single PPG cycle for (a) Non-sepsis and (b) sepsis labels.

removed. In our analysis, we specifically selected the initial minute of the signals
that remained after the filter performed. Next, we take the first minute of the
signal; the consistency and quality of each 1-min sample were evaluated using a
template matching method. This method is based on the Elgendi paper [2] for
analyzing PPG signals. This quality assessment involved the implementation of
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Fig. 3: Comparison of a single PPG cycle for (a) Severe sepsis and (b) Septic
Shock labels.

a 10-s running window over the 1-min segment. We categorized each window by
comparing the patient-acquired signal with an ideal template PPG signal. The
degree of similarity between these time series was quantified using Pearson’s
correlation coefficient. We limited PPG records to 40 subjects per ICD-9 code
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to avoid over representing a category in our dataset. These stringent condition
reduced our dataset to 915 waveforms for our control and case groups.

The template was generated using the NeuroKit2 Python toolbox [13], a pack-
age designed for processing neurophysiological signals. The reference PPG signal
was simulated without noise and motion artifacts. In this simulation process,
input parameters such as the signal’s sampling frequency and the mean heart
rate within each window were essential. The sampling frequency was established
at 125 Hz, consistent with the frequency utilized for all signals in the waveform
database. Additionally, we subdivided our signals based on cardiac cycles, deter-
mining the quantity of systolic cardiac peaks for each second per hertz of the
waveform. To pinpoint the locations of these peaks, we initially filtered the signal
and subsequently employed NeuroKit’s peak detection method.

Moreover, systolic peak detection was conducted by identifying systolic peaks
within each 10-s segment. The diastolic counterpart was sampled for every iden-
tified systolic point as our cardiac cycle’s start and end points. This approach
allowed us to pinpoint the maximum amplitude within each segment, thereby
successfully delineating each distinct signal cycle. We extracted the count of
segments and the amplitudes associated with each cycle for further evaluation.
Specifically, cycles within the size range of 110 to 120 were selected. We per-
form a resizing approach for cycles smaller than 120 samples, employing bicubic
interpolation. This method facilitates the prediction of values at intermediate
positions within the cycle. As a result, our final cohort comprises 915 signals,
labeled as 235 for Non-sepsis, 210 for sepsis, 190 for Severe sepsis, and 280 for
Septic Shock. Figures2 and 3 show examples of the Non-sepsis, Sepsis, Severe
Sepsis, and Septic Shock PPG signals.

Input PPG LSTM
Cycle Layer

!

Sepsis
Severe Sepsis
Septic Shock

Sepsis

Fully Connected Layer
l
Classification Layer
‘

f No Sepsis

Fig. 4: Detection and classification model based on LSTM layer. The Input is a
single cycle of a PPG signal. The Output a category label of Not-sepsis, sepsis,
Severe sepsis and Septic Shock.

2.3 Classification

We explore different network architectures for sepsis classification, including
Long Short-Term Memory (LSTM) [6], Convolutional Neural Networks (CNN)
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[11], and fully-connected networks. The LSTM-based models show promising
performance in sepsis detection and classification from PPG signals.

The DL model presented is formed by a graph of five layers: Sequence input,
LSTM, fully-connected, Softmax, and Classification. The input/output diagram
of the model is presented in Fig. 4. In particular, our binary classification study,
which confined 915 PPG signals of sepsis and control patients, has an unbalanced
splitting for the detection approach because the Sepsis case contains Severe sepsis
and Septic Shock signals. Within this framework, the LSTM model was trained
on 70%, validated on 10%, and tested on 20% of the data.

We compute the common metrics for a binary classifier and the Area Under
the Curve (AUC), i.e.:

R B TP + TN 0
Y = TP TN+ FP+ FN

. TP
Sen81t1V1ty = m—m (2)

TN

ity — 1Y

Specificity FPLTN (3)
AUC = Sensitivity (T PR) — (1 — Specificity)(F'PR) (4)

For the multi-class case, we present the confusion matrix and focus on the
Accuracy metric because the correct predictions are the interest in sepsis detec-
tion and classification.

3 Results

In this section, we present the classification results in two scenarios: Sect. 3.1 for
the detection of sepsis (case and control), and Sect. 3.2 the classification of the
signals based patient condition: sepsis, Severe sepsis, and Septic Shock.

3.1 Detection Sepsis

In this case, the LSTM model classifies the PPG cycle in two categories, i.e. sep-
sis, and non-sepsis. The training process takes 200 epochs using a learning rate of
0.001; due to limited data, we perform several training trials as an alternative to
validate the classifier. Table 2 shows the model’s performance for the trials. The
repeatability of the results is guaranteed using a random number generator (rng)
in each case. The seed is randomly chosen as k = [22,5,1,6,7,9,10, 15,57, 87].
The mean value of the overall accuracy for training data is 91.30%, and for testing
data, it is 89.74%. Figure 5 presents an example of the confusion matrix for sep-
sis detection. We compare the metrics of the model in terms of the PPG length,
showing in Table 3 that the PPG cycle alternative obtains the best results.
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Case 0 3 21%

Control 14 26 35.0%

True Class

9.1% 10.3%

Case Control
Predicted Class

Fig. 5: Detection of sepsis using LSTM model. Testing data: Overall Accuracy
= 90.71%, rng k = 6.

3.2 Classification of Sepsis, Severe Sepsis, and Septic Shock

For this case, we consider the ICD codes 99591, 99592, and 98552 as the labels
for sepsis, Severe sepsis, and Septic shock, respectively. The Control patients are

Table 2: Detection performance of the DL model in terms of the seed k

k Training | Test
22 91.82 90.16

5) 90.65 89.62
1 91.59 90.16
6 92.06 90.71
7 89.72 91.26
9 92.29 89.07

10 93.22 87.98
15 89.95 88.52
57 90.42 90.16
87 90.19 87.98
mean | 91.30 89.74
std | 1.18 1.05
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Table 3: Table of Binary classification metrics

Accuracy | Sensitivity | Specificity | AUC
1 min 77.97 02.17 91.97 47.07
3s 88.35 25.88 91.17 58.52
Cycle approach (<1s){90.71 90.91 89.66 90.28

the fourth class. Similarly to the detection approach, we perform several trials
for training to validate the classifier. For training and testing data, we show
the model’s performance for the trials in Tables4 and 5. The mean value of the
overall accuracy for training data is 85.28, and for testing data, it is 85.79%.
Figure 6 presents an example of the confusion matrix for the testing data.

Table 4: Performance of Accuracy Metric on Training data in terms of the seed

k

k Training data
Sepsis | Severe sepsis | Septic shock | Non sepsis | Overall

22 94.9 |75.9 85.0 86.7 85.3
5 94.9 |77.8 83.8 90.8 86.2
1 95.8 |75.0 88.3 89.2 86.2
6 93.1 |74.0 89.3 88.0 85.5
7 94.8 | 714 87.9 87.1 83.9
9 96.0 |77.3 87.5 94.8 88.1
10 93.5 |82.1 87.7 91.8 88.3
15 94.3 |71.0 83.0 89.9 83.4
57 94.6 |78.3 89.0 91.8 87.4
87 94.7 |74.0 83.5 92.1 85.0
mean | 94.7 | 75.7 86.5 90.2 85.9
std 0.9 3.4 2.4 2.5 2.0

We did the classification experiments in a Windows 10 Education Desktop
computer, using an Intel(R) Core(TM) i7-8700 CPU 3.20 (GHz) with 16 GB
RAM, in the Laboratory for Applied Remote Sensing and Image Processing
(LARSIP) at the University of Puerto Rico, Mayaguez Campus. We employ the
Deep Learning Toolbox of MATLAB.
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Table 5: Performance of Accuracy Metric on Training data in terms of the seed
k

k Testing data
Sepsis | Severe sepsis | Septic shock | Not sepsis | Overall

22 97.0 |794 80.5 90.2 85.2

5 88.1 |71.2 91.5 81.0 82.5

1 100.0 |64.2 77.6 72.7 77.0

6 85.1 |84.6 77.8 87.2 83.6

7 95.0 |64.3 88.2 86.1 82.0

9 79.2 |74.5 76.6 87.9 78.7

10 93.2 |72.4 81.4 84.2 82.0

15 90.0 |70.8 75.9 81.5 79.2

57 97.7 |64.3 83.3 86.1 81.4

87 90.5 |72.9 85.7 85.1 82.5

mean |[91.6 | 71.9 81.6 84.2 81.4

std 6.3 6.7 5.3 4.9 2.4

Not Sepsis 2 8 21.3%

Sepsis 1 4 4 21.4%

» SepticShock 2 3 13.2%
8
.
 Severe Sepsis 1 1 3.6%

90.2% 97.1% 84.6%

9.8% 2.9% 15.4% 21.7%

Not Sepsis Sepsis Septic Shock Severe Sepsis
Predicted Class

Fig. 6: Classification results of each sepsis condition and No sepsis type using
LSTM model. Testing: Overall Accuracy = 85.79%

4 Conclusion and Future Work

This article presents a DL model based on the LSTM layer to detect and classify
PPG signals concerning the sepsis condition. Our model has the advantage of
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requiring a single cycle of PPG to classify the sepsis condition, making it possible
for almost real-time diagnosis and monitoring.

We believe that the LSTM layer is appropriate for the classification task
because the PPG signal has a structure of time sequences in which the LSTM
can operate. Therefore, extracting features from the single cycle of PPG (i.e.,
the input of the model) is well performed, allowing the fully-connected layer to
find an optimized solution for the classification.

The dataset utilized in this study can be generated from the publicly available
data of the MIMIC-IIT Waveform Database Matched Subset repository. For repli-
cation of our findings, please refer to the methodology outlined in Sect. 2.1. Uti-
lizing the MIMIC-III Clinical Database enabled us to ascertain patient records
with increased certainty.

Taking into account that an analysis of the imported tables in Postgresql
must be carried out to have the data set for more precise information on patient
admissions at the ICU entrance, which guarantees the accuracy of the data used
for our analysis. The codes necessary for reproducing our results are available
upon request.

PPG technology is advancing in precision, sensitivity, and detection of subtle
signals. We have portable and wearable devices that allow continuous health
monitoring. With these advances, it can be seen that PPG signals can be used
to detect cardiovascular, and respiratory diseases, diabetes, sepsis, and stress.

The advantages of PPG signals include their non-invasive nature, low cost,
ease of use, and portability; these challenges include sensitivity to motion,
environmental interference, and inter-individual variability. With this ongoing
research, the use of PPG signals in disease detection may be validated. In future
work, we aim to test our model on a larger patient group, consisting of both con-
trol and case groups with varying levels of sepsis severity. Our goal is to assess
the effectiveness of our method in predicting the onset time of sepsis. To achieve
this, we plan to train and test the model on a dataset where diagnosis times are
known.

We recognize the importance of accurate diagnosis in saving lives and provid-
ing timely treatment. We believe that this work contributes to the early detection
of sepsis with deep learning, presenting an approach that requires a single cycle
of PPG signal for the input of an LSTM model. As a part of our future work,
we aim to compare the accuracy of our model with a physician’s precision in
predicting sepsis.

Acknowledgment. This work is partially supported by: NSF Grant No. OAC-
1750970, NSF Award No. OIA-1849243, and MARC-UPRM Program T34GMO008419.
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